问题 填空题
已知向量
OA
OB
OC
满足条件
OA
+
OB
-
OC
=
0
,且|
OA
|=|
OB
|=1,|
OC
|=
2
,则三角形ABC的形状是______.
答案

|

OA
|=|
OB
|=1,|
OC
|=
2
,可得边长OA=OB=1,OC=
2

满足勾股定理,且两直角边相等,

故此三角形ABC的形状是等腰直角三角形.

选择题
名词解释