问题 解答题
已知0<ω<2,设f(x)=cos2ωx+
3
sinωxcosωx
(1)若f(x)的周期为2π,求f(x)的单调递增区间;
(2)若函数f(x)图象的一条对称轴为x=
π
6
,求
ω的值.
答案

(1)f(x)=cos2ωx+

3
sinωxcosωx

=

1
2
(1+cos2ωx)+
3
2
sin2ωx

=

1
2
cos2ωx+
3
2
sin2ωx+
1
2

=sin(2ωx+

π
6
)+
1
2

由T=

=2π,得ω=
1
2

∴f(x)=sin(x+

π
6
)+
1
2

由2kπ-

π
2
≤x+
π
6
≤2kπ+
π
2
,得2kπ-
3
≤x≤2kπ+
π
3

∴f(x)的单调递增区间为[2kπ-

3
,2kπ+
π
3
],k∈Z

(2)∵x=

π
6
是函数图象的一条对称轴,

∴2ω×

π
6
+
π
6
=kπ+
π
2
,即ω=3k+1,k∈Z

又0<ω<2,

∴当k=0时,ω=1即为所求

单项选择题
单项选择题