问题 解答题
已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
2
,且过点P(4,-
10
).
(1)求双曲线C的方程;
(2)若点M(3,m)在双曲线上,求证:
MF1
MF2
=0;
(3)求△F1MF2的面积.
答案

(1)∵e=

2
,∴可设双曲线方程为x2-y2=λ.

∵过点(4,-

10
),∴16-10=λ,即λ=6.

∴双曲线方程为x2-y2=6;

(2)证明:∵

MF1
=(-3-2
3
,-m),
MF2
=(2
3
-3,-m),

MF1
MF2
=(-3-2
3
)×(2
3
-3)+m2=-3+m2

∵M点在双曲线上,∴9-m2=6,即m2-3=0,

MF1
MF2
=0.

(3)△F1MF2中|F1F2|=4

3
,由(2)知m=±
3

∴△F1MF2的F1F2边上的高h=|m|=

3
,∴S△F1MF2=6.

多项选择题
单项选择题