问题 解答题
已知O为原点,向量
OA
=(3cosx,3sinx),
OB
=(3cosx,sinx),
OC
=(2,0),x∈(0,
π
2
)

(1)求证:(
OA
-
OB
OC

(2)求tan∠AOB的最大值及相应x值.
答案

(1)∵0<x<

π
2
,∴3sinx>sinx,∴
OA
-
OB
≠0

OA
-
OB
=(0,2sinx)

∴(

OA
-
OB
)•
OC
=0×2+2sinx×0=0

∴(

OA
-
OB
)⊥
OC

(2)tan∠AOC=

3sinx
3cosx
=tanx,tan∠BOC=
sinx
3cosx
=
1
3
tanx

OA
-
OB
=
BA
,∴
BA
OC
,0<∠AOB<
π
2

∴tan∠AOB=tan(∠AOC-∠BOC)

=

tan∠AOC-tan∠BOC
1+tan∠AOCtan∠BOC
=
tanx-
1
3
tanx
1+ 
1
3
tan2x

=

2tanx
3+tan2x
2tanx
2
3tanx
=
3
3

(当tanx=

3
即x=
π
3
时取“=”)

所以tan∠AOB的最大值为

3
3
,相应的x=
π
3

判断题
填空题