问题
解答题
设△ABC的内角A、B、C的对边分别是a、b、c,且a=3,b=5,c=
(Ⅰ)求cosC的值; (Ⅱ)求
|
答案
(Ⅰ)由余弦定理cosC=
,a2b2-c2 2ab
得cosC=
=9+25-14 2×3×5
.2 3
(Ⅱ)由(Ⅰ)知cosC>0,
所以角c为锐角,所以sinC=
=1-cos2C
,5 3
则
=
-6sin(C+5
)π 3 cos2C
-6(sinc×cos5
+cosc×sinπ 3
)π 3 2cos2C-1
-6(5
×5 3
+1 2
×2 3
)3 2 2×
-14 9
=18
.3
所以
=18
-6sin(C+5
)π 3 cos2C
.3