问题 解答题
已知
a
=(cos
3
2
x,sin
3
2
x) 
b
=(cos
x
2
,-sin
x
2
)
,且x∈[0,
π
2
]

(1)求
a
b
|
a
+
b
|

(2)求函数f(x)=
a
b
-|
a
+
b
|sinx
的最小值.
答案

(1)

a
b
=cos
3x
2
cos
x
2
-sin
3x
2
sin
x
2
=cos2x,

|

a
+
b
|=
(cos
3x
2
+cos
x
2
)
2
+(sin
3x
2
+sin
x
2
)
2
=
2+2(cos
3x
2
cos
x
2
-sin
3x
2
sin
x
2
)

=

2+2cos2x
=2|cosx|

x∈[0,

π
2
],∴cosx>0.∴|
a
+
b
|=2cosx.

(2)f(x)=

a
b
-|
a
+
b
|sinx=cos2x-2cosxsinx

=cos2x-sin2x=

2
cos(2x+
π
4
)

x∈[0,

π
2
]∴
π
4
≤2x+
π
4
4

当2x+

π
4
=π即x=
8
时f(x)有最小值为-\sqrt{2}.

选择题