问题
选择题
在△ABC中,若cosAcosB=sin2
|
答案
∵cosAcosB=sin2
=C 2
,1-cosC 2
又cosC=cos[π-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB,
∴2cosAcosB=1-cosC=1-(-cosAcosB+sinAsinB)=1+cosAcosB-sinAsinB,
移项合并得:cosAcosB+sinAsinB=1,即cos(A-B)=1,
又A和B都为三角形的内角,∴A-B=0,即A=B,
∴a=b,
则△ABC是等腰三角形.
故选B