问题
填空题
设G为△ABC的重心,
|
答案
因为
|BC|3
+2|CA|GA
+2GB
|AB|3
=GC 0
设三角形的边长顺次为a,b,c,根据正弦定理得:
a 3
+2b GA
+2GB
c 3
=GC
,0
由点G为三角形的重心,根据中线的性质及向量加法法则得:
3
=GA
+BA
,3 CA
=GB
+CB
,3 AB
=GC
+AC
,BC
代入上式得:
a( 3
+BA
)+2b( CA
+AB
)+2CB
c( 3
+AC
)=BC
,0
又
=CA
+CB
,上式可化为:BA
a(2 3
+BA
)+2b( CB
+AB
)+2CB
c(-3
+2 BA
)=BC
,0
即(2
a-2b-23
c) 3
+(-BA
a-2b+43
c) 3
=BC
,0
则有
,令b=2
a-2b-23
c=0① 3 -
a-2b+43
c=0② 3
,解得:3
,a=2 c=1
所以cosB=
=a2+c2-b2 2ac
=22+12-
23 2×2×1
,1 2
cosC=
=a2+b2-c2 2ab
=22+
2-123 2×2× 3
,3 2
∴
=
•AB BC
•BC AC
=|
|•AB
|cos(π-B)|BC |
|•|BC
|cosCAC
=-c•cosB bcosC
=--1• 1 2
×3 3 2 1 3
故答案为:-1 3