问题
填空题
设
|
答案
不妨设
=(1,0),a
=(0,1),b
=(x,y) 满足x2+y2=1c
∴(
-a
)•(c
-b
)=1-(x+y)c
∵(x+y)2≤2(x2+y2)=2,
∴x+y≤
则-(x+y)≥-2 2
∴(
-a
)•(c
-b
)=1-(x+y)≥1-c 2
即(
-a
)•(c
-b
)的最小值为1-c 2
故答案为:1-2
设
|
不妨设
=(1,0),a
=(0,1),b
=(x,y) 满足x2+y2=1c
∴(
-a
)•(c
-b
)=1-(x+y)c
∵(x+y)2≤2(x2+y2)=2,
∴x+y≤
则-(x+y)≥-2 2
∴(
-a
)•(c
-b
)=1-(x+y)≥1-c 2
即(
-a
)•(c
-b
)的最小值为1-c 2
故答案为:1-2