问题 解答题
已知两定点E(-
2
,0),F(
2
,0),动点P满足
PE
PF
=0,由点P向x轴作垂线PQ,垂足为Q,点M满足
PQ
=
2
MQ
,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线l交曲线C于A、B两点,且坐标原点O到直线l的距离为
2
2
,求|AB|的最大值.
答案

(Ⅰ)设P(m,n),则

∵两定点E(-

2
,0),F(
2
,0),动点P满足
PE
PF
=0,

∴(-

2
-m,-n)•(
2
-m,-n)=0,

∴m2+n2=2

设M(x,y),则

∵由点P向x轴作垂线PQ,垂足为Q,点M满足

PQ
=
2
MQ

∴P(x,

2
y)

∴x2+2y2=2

∴曲线C的方程为

x2
2
+y2=1;

(Ⅱ)①若直线l垂直于x轴,此时|AB|=

3
. …(5分)

②若直线l不垂直于x轴,设直线l的方程为y=kx+m,

则原点O到直线l的距离为

|m|
1+k2
=
2
2
,整理可得2m2=1+k2.…(6分)

y=kx+m
x2
2
+y2=1
消去y可得(1+2k2)x2+4kmx+2m2-2=0.

设A(x1,y1),B(x2,y2),由题意可得△>0,

则x1+x2=-

4km
1+2k2
,x1x2=
2(m2-1)
1+2k2

∴|AB|=

1+k2
(x1+x2)2-4x1x2
=2
2
(1+k2)(1+2k2-m2)
1+2k2
…(8分)

∵2m2=1+k2

∴2 (1+k2)(1+2k2-m2)=(1+k2)(2+4k2-2m2)=(1+k2)(1+3k2)≤(1+2k22

等号当且仅当1+k2=1+3k2,即k=0时成立.

即2

2
(1+k2)(1+2k2-m2)
1+2k2
≤2.

所以k=0时,|AB|取得最大值2.…(12分)

问答题 简答题
多项选择题