问题 解答题
若函数f(x)=2sinxcosx-2
3
sin2x+
3

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0,
π
2
]
时,求函数f(x)的最大值与最小值.
答案

(Ⅰ)由题意得f(x)=2sinxcosx+

3
(-2sin2x+1)=sin2x+
3
cos2x

=2sin(2x+

π
3
),

f(x)=2sin(2x+

π
3
),∴函数的周期是T=
2

(Ⅱ)∵x∈[0,

π
2
],∴
π
3
≤2x+
π
3
3

-

3
2
≤sin(2x+
π
3
)≤1,

f(x)max=2,f(x)min=-

3

单项选择题
问答题 简答题