问题
解答题
已知
(I)求ω的值; (Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且a,b,c成等差:当f(B)=1'时,判断△ABC的形状. |
答案
(I)∵
=(cosωx+sinωx,m
cosωx),3
=(cosωx-sinωx,2sinωx) (ω>0)n ∴f(x)=
•m
=n
=cos2ωx-sin2ωx+2m
cosωxsinωx=cos2ωx+3
sin2ωx,3 ∴f(x)=2sin(2ωx+
)π 6
∵函数f(x)的周期为π∴T=
=π∴ω=12π 2ω
(Ⅱ)在△ABC中f(B)=1∴2sin(2B+
)=1∴sin(2B=π 6
)=π 6 1 2
又∵0<B<π∴
<2B+π 6
<π 6
π7 6
∵2B+
=π 6
∴B=5π 5
∵a,b,c成等差∴2b=a+cπ 3
∴cosB=cos
=π 3
=a2+c2-b2 2ac
∴ac=a2+c2-1 2 (a+c)2 4
化简得:a=c又∵B=
∴△ABC为正三角形π 3