问题
解答题
已知⊙O的直径为10,AB是⊙O的一条直径,长为20的线段MN的中点P在⊙O上运动(异于A、B两点). (Ⅰ)求证:
(Ⅱ)当
|
答案
证明:(Ⅰ)∵AB为⊙O的直径,P为圆上一点,∴AP⊥BP,
∴
⊥AP
,则BP
•AP
=0,BP
∵P为MN的中点,且|
|=20,∴MN
=MP
,PN
= ||MP|
|=10,PN
∴
•AM
=(BN
+AP
)(PM
+BP
)=(PN
-AP
)(PN
+BP
)PN
=
•AP
+BP
•AP
-PN
•PN
-BP
•PN PN
=
(PN
-AP
)-100=BP 1 2
•MN
-100,AB
∴
•AM
仅与BN
•MN
的夹角有关,而与点P在⊙O上的位置无关;AB
(Ⅱ)由(Ⅰ)得,
•AM
=BN 1 2
•MN
-100=100cosθ-100,AB
∵0≤θ<π,∴当θ=0时,
•AM
取最大值为0.BN