设f(x)=6cos2x-
(Ⅰ)求f(x)的最大值及最小正周期; (Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,锐角A满足f(A)=3-2
|
(Ⅰ)f (x)=3(1+cos2x)-
sin2x=23
(3
cos2x-3 2
sin2x)+31 2
=2
cos(2x+3
)+3,π 6
当cos(2x+
)=1时,f (x)取得最大值为2π 6
+3;3
最小正周期T=
=π. 2π 2
(Ⅱ)由f (A)=3-2
得23
cos(2A+3
)+3=3-2π 6
,3
∴cos(2A+
)=-1,π 6
又由0<A<
,得π 2
<2A+π 6
<π+π 6
,π 6
故2A+
=π,解得A=π 6
.又B=5π 12
,∴C=π-π 12
-5π 12
=π 12
.π 2
由余弦定理得
=2cosC=0.a2+b2-c2 ab