问题
填空题
设点O是△ABC的外心,AB=13,AC=12,则
|
答案
过O作OS⊥AB,OT⊥AC垂足分别为S,T 则S,T分别是AB,AC的中点,
•BC
=(AO
+BA
)•AC
=AO
•BA
+AO
•AC AO
=-|
||BA
|+|AS
|•|AC
|=-13×AT
+12×13 2 12 2
=-25 2
故答案为:-25 2
设点O是△ABC的外心,AB=13,AC=12,则
|
过O作OS⊥AB,OT⊥AC垂足分别为S,T 则S,T分别是AB,AC的中点,
•BC
=(AO
+BA
)•AC
=AO
•BA
+AO
•AC AO
=-|
||BA
|+|AS
|•|AC
|=-13×AT
+12×13 2 12 2
=-25 2
故答案为:-25 2