定长等于2
(Ⅰ)求轨迹C的方程; (Ⅱ)设过点(0,1)的直线l与轨迹C交于P,Q两点,问:在y轴上是否存在定点T,使得不论l如何转动,
|
(Ⅰ)设M(x,y),A(x1,
x1),B(x2,-6 2
x2),6 2
则x1+x2=2x,x1-x2=
,代入|AB|=4y 6
=2(x1-x2)2+
(x1+x2)26 4
,6
得轨迹C的方程为
+6x2=24,即16y2 6
+y2 9
=1;x2 4
(Ⅱ)(1)若l不与y轴重合,设直线l方程为y=kx+1,代入椭圆C的方程得(4k2+9)x2+8kx-32=0,
设P(x3,kx3+1),Q(x4,kx4+1),
则x3+x4=-
,x3•x4=-8k 4k2+9
;32 4k2+9
设点T(0,t),则
•TP
=x3•x4+(kx3+1-t)•(kx4+1-t)TQ
=(1+k2)x3x4+k(1-t)(x3+x4)+(1-t)2
=-32(1+k2)-8k2(1-t)+(1-t)2(4k2+9) 4k2+9
=
,[-40+8t+4(1-t)2]k2+[-32+9(1-t)2] 4k2+9
使
•TP
为定值,则 TQ
=-32+9(1-t)2 -40+8t+4(1-t)2
,9 4
解得t=
,即对于点T(0,29 9
)总有29 9
•TP
=TQ
;16×7 9×9
(2)当l与y轴重合时,P(0,3),Q(0,-3),对于点T(0,
)也有29 9
•TP
=TQ
,16×7 9×9
故在y轴上存在定点T(0,
)使得29 9
•TP
为定值.TQ