在△ABC中,内角A,B,C的对边长分别为a,b,c,且满足A+C=3B,cos(B+C)=-
(Ⅰ)求sinC的值; (Ⅱ)若a=5,求△ABC的面积. |
(Ⅰ)由A+C=π-B=3B⇒B=
,---------------(1分)π 4
所以cos(B+C)=cos(
+C)=-π 4
,--------------(2分)3 5
因为sin(B+C)=sin(
+C)=π 4
=1-cos2(
+C)π 4
,-------------(4分)4 5
所以sinC=sin[(
+C)-π 4
]=sin(π 4
+C)cosπ 4
-cos(π 4
+C)sinπ 4
=π 4
×4 5
+2 2
×3 5
=2 2
.-----(7分)7 2 10
(Ⅱ)由已知得sinA=sin(B+C)=
=1-cos2(B+C)
,-------------(8分)4 5
因为a=5 , B=
, sinC=π 4
,7 2 10
所以由正弦定理
=a sinA
=b sinB
得c sinC
=b 2 2
=c 7 2 10
=5 4 5
,25 4
解得b=
, c=25 2 8
.-----------------(12分)35 2 8
所以△ABC的面积S=
absinC=1 2
×5×1 2
×25 2 8
=7 2 10
.----------(14分)175 16