问题
解答题
设f(x)=6cos2x-
(Ⅰ)求f(x)的最大值及最小正周期; (Ⅱ)△ABC中锐角A满足f(A)=3-2
|
答案
(Ⅰ)f(x)=6cos2x-
sin2x3
=6×
-1+cos2x 2
sin2x3
=3cos2x-
sin2x+33
=2
(3
cos2x-3 2
sin2x)+31 2
=2
cos(2x+3
)+3,π 6
∵-1≤cos(2x+
)≤1,π 6
∴f(x)的最大值为2
+3;3
又ω=2,∴最小正周期T=
=π;2π 2
(Ⅱ)由f(A)=3-2
得:23
cos(2A+3
)+3=3-2π 6
,3
∴cos(2A+
)=-1,π 6
又0<A<
,∴π 2
<2A+π 6
<π 6
,7π 6
∴2A+
=π,即A=π 6
,5 12
又B=
,∴C=π 12
,π 2
∴cosC=
=0,a2+b2-c2 2ab
则(
+a b
)-b a
=c2 ab
=2×a2+b2-c2 ab
=2cosC=0.a2+b2-c2 2ab