问题 解答题
设f(x)=6cos2x-
3
sin2x.
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)△ABC中锐角A满足f(A)=3-2
3
B=
π
12
,角A、B、C的对边分别为a,b,c,求(
a
b
+
b
a
)-
c2
ab
的值.
答案

(Ⅰ)f(x)=6cos2x-

3
sin2x

=6×

1+cos2x
2
-
3
sin2x

=3cos2x-

3
sin2x+3

=2

3
3
2
cos2x-
1
2
sin2x)+3

=2

3
cos(2x+
π
6
)+3,

∵-1≤cos(2x+

π
6
)≤1,

∴f(x)的最大值为2

3
+3;

又ω=2,∴最小正周期T=

2
=π;

(Ⅱ)由f(A)=3-2

3
得:2
3
cos(2A+
π
6
)+3=3-2
3

∴cos(2A+

π
6
)=-1,

又0<A<

π
2
,∴
π
6
<2A+
π
6
6

∴2A+

π
6
=π,即A=
5
12

又B=

π
12
,∴C=
π
2

∴cosC=

a2+b2-c2
2ab
=0,

则(

a
b
+
b
a
)-
c2
ab
=
a2+b2-c2
ab
=2×
a2+b2-c2
2ab
=2cosC=0.

单项选择题
单项选择题