问题 解答题
设平面向量
m
=(cos2
x
2
3
sinx),
n
=(2,1),函数f(x)=
m
n

(Ⅰ)当x∈[-
π
3
π
2
]时,求函数f(x)的取值范围;
(Ⅱ)当f(α)=
13
5
,且-
3
<α<
π
6
时,求sin(2α+
π
3
)的值.
答案

解析:(Ⅰ)∵

m
=(cos2
x
2
3
sinx),
n
=(2,1),

f(x)=(cos2

x
2
3
sinx)•(2,1)=2cos2
x
2
+
3
sinx

=cosx+

3
sinx+1=2sin(x+
π
6
)+1

x∈[-

π
3
π
2
]时,x+
π
6
∈[-
π
6
3
]

-

1
2
≤sin(x+
π
6
)≤1,0≤2sin(x+
π
6
)+1≤3

∴f(x)的取值范围是[0,3];

(Ⅱ)由f(α)=2sin(α+

π
6
)+1=
13
5
,得sin(α+
π
6
)=
4
5

-

3
<α<
π
6

-

π
2
<α+
π
6
π
3
,得cos(α+
π
6
)=
3
5

sin(2α+

π
3
)=sin[2(α+
π
6
)]=2sin(α+
π
6
)cos(α+
π
6
)=2×
4
5
×
3
5
=
24
25

判断题
单项选择题