问题 解答题
已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+2cos2x

(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)求使f(x)≥2的x的取值范围.
答案

(Ⅰ)∵sin(2x+

π
6
)=sin2xcos
π
6
+cos2xsin
π
6

sin(2x-

π
6
)=sin2xcos
π
6
-cos2xsin
π
6
,cos2x=
1
2
(cos2x+1)

f(x)=sin(2x+

π
6
)+sin(2x-
π
6
)+2cos2x

=sin2xcos

π
6
+cos2xsin
π
6
+sin2xcos
π
6
-cos2xsin
π
6
+cos2x+1

=

3
sin2x+cos2x+1=2sin(2x+
π
6
)+1

可得f(x)的最小正周期T=

|ω|
=
2
=π.

-

π
2
+2kπ≤2x+
π
6
π
2
+2kπ(k∈Z),解之得-
π
3
+kπ≤x≤
π
6
+kπ
(k∈Z),

∴函数f(x)的递增区间是[-

π
3
+kπ,
π
6
+kπ],k∈Z.

(Ⅱ)由f(x)≥2,得2sin(2x+

π
6
)+1≥2(k∈Z),即sin(2x+
π
6
)≥
1
2

根据正弦函数的图象,可得

π
6
+2kπ≤2x+
π
6
6
+2kπ(k∈Z),

解之得kπ≤x≤kπ+

π
3
(k∈Z),

∴使不等式f(x)≥2成立的x取值范围是{x|kπ≤x≤kπ+

π
3
,k∈Z}.

选择题
单项选择题