问题
解答题
已知函数f(x)=sin(2x+
(Ⅰ)求f(x)的最小正周期和单调递增区间; (Ⅱ)求使f(x)≥2的x的取值范围. |
答案
(Ⅰ)∵sin(2x+
)=sin2xcosπ 6
+cos2xsinπ 6
,π 6
sin(2x-
)=sin2xcosπ 6
-cos2xsinπ 6
,cos2x=π 6
(cos2x+1)1 2
∴f(x)=sin(2x+
)+sin(2x-π 6
)+2cos2xπ 6
=sin2xcos
+cos2xsinπ 6
+sin2xcosπ 6
-cos2xsinπ 6
+cos2x+1π 6
=
sin2x+cos2x+1=2sin(2x+3
)+1π 6
可得f(x)的最小正周期T=
=2π |ω|
=π.2π 2
令-
+2kπ≤2x+π 2
≤π 6
+2kπ(k∈Z),解之得-π 2
+kπ≤x≤π 3
+kπ(k∈Z),π 6
∴函数f(x)的递增区间是[-
+kπ,π 3
+kπ],k∈Z.π 6
(Ⅱ)由f(x)≥2,得2sin(2x+
)+1≥2(k∈Z),即sin(2x+π 6
)≥π 6
,1 2
根据正弦函数的图象,可得
+2kπ≤2x+π 6
≤π 6
+2kπ(k∈Z),5π 6
解之得kπ≤x≤kπ+
(k∈Z),π 3
∴使不等式f(x)≥2成立的x取值范围是{x|kπ≤x≤kπ+
,k∈Z}.π 3