问题
选择题
设△ABC,bcosC+ccosB=asinA,则△ABC的形状为( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定
答案
△ABC的内角A,B,C所对的边分别为a,b,c,
∵bcosC+ccosB=asinA,则由正弦定理可得 sinBcosC+sinCcosB=sinAsinA,
即 sin(B+C)=sinAsinA,可得sinA=1,故A=
,π 2
故三角形为直角三角形,
故选B.