问题 填空题
已知向量
OA
OB
OC
满足条件:
OA
+
OB
+
OC
=
0
,且|
OA
|=|
OB
|=|
OC
|
=2,点P是△ABC内一动点,则
AB
AP
+
BC
BP
+
CA
CP
=______.
答案

OA
+
OB
+
OC
=
0
,且|
OA
|=|
OB
|=|
OC
|
=2,

∴向量

OA
OB
OC
两两夹角均为120°

|

OA
|2=|
OB
|2=|
OC
|2=4,
OA
OB
=
OB
OC
=
OA
OC
=-2

AB
AP
+
BC
BP
+
CA
CP

=(

OB
-
OA
)•(
OP
-
OA
)+(
OC
-
OB
)•(
OP
-
OB
)
+(
OA
-
OC
)•(
OP
-
OC
)

=(|

OA
|2+|
OB
|2+|
OC
|2)-(
OA
OB
+
OB
OC
+
OA
OC
)

=12+6=18

故答案:18

选择题
多项选择题