问题 解答题
在直角坐标系中,已知点P(x,y).O为坐标原点.
(1)若
x=a+rcosθ
y=b+rsinθ
(其中a、b、r是常数,且r>0),求证:(x-a)2+(y-b)2=r2
(2)若点A(2,4),M(2x-1,22y-1),N(4y,2x),
OP
AP
=-1
,求u=
ON
OM
的取值范围.
答案

(1)由cos2θ+cos2θ=1 消去θ即得 (x-a)2+(y-b)2=r2

(2)由

OP
AP
=-1,可得 x(x-2)+y(y-4)=-1,∴(x-1)2+(y-2)2=4.

令x=1+2cosθ,y=2+2sinθ,又u=

ON
OM
=2x-1•4y +22y-1•2x =2x+2y

又x+2y=5+2cosθ+4sinθ=5+2

5
 sin(θ+∅),cos∅=
2
5
,sin∅=
1
5

5-2

5
≤x+2y≤5+2
5
,∴u的取值范围为[25-2
5
25+2
5
]

多项选择题
多项选择题