问题
解答题
已知圆O:x2+y2=1,点O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆
(Ⅰ)设b=f(k),求f(k)的表达式,并注明k的取值范围; (Ⅱ)若
(Ⅲ)若
|
答案
(Ⅰ)y=kx+b(b>0)与圆x2+y2=1相切,则
=1,|b| 1+k2
即b2=k2+1,k≠0,所以b=
(b>0)k2+1
∴f(k)=
(k∈R, k≠0)(3分)k2+1
(Ⅱ)设A(x1,y1),B(x2,y2)则由
,消去yy=kx+b
+y2=1x2 2
得(2k2+1)x2+4kbx+2b2-2=0
又△=8k2>0
∴x1+x2=-
,x1x2=4kb 2k2+1
(5分)2b2-2 2k2+1
从而
•OA
=x1x2+y1y2=OB
=k2+1 2k2+1
,∴k=±12 3
∴b=
=k2+1
(7分)2
∴直线l的方程为:±x-y+
=0.(8分)2
(Ⅲ)由(Ⅱ)知:
=m,又k2+1 2k2+1
≤m≤2 3 3 4
∴
≤2 3
≤k2+1 2k2+1
⇒3 4
≤k2≤1(10分)1 2
由弦长公式,得|AB|=
•k2+1
=2 2k2 2k2+1 2k2(k2+1) 2k2+1
又点O到直线AB的距离d=
=|b| k2+1
=1b k2+1
∴S=
|AB|•d=1 2
(12分)S2=2k2(k2+1) 2k2+1
=2k4+2k2 4k4+4k2+1
-1 2
(1 2(2k2+1)2
≤k2≤1)1 2
∴
≤S≤6 4
(14分)2 3