问题 解答题
在△OAB中,
(1)若C为直线AB上一点,且
AC
CB
(λ≠-1)
,求证:
OC
=
OA
OB
1+λ

(2)若
OA
OB
=0
|
OA
|=|
OB
|=a
,且C为线段AB上靠近A的一个三等分点,求
OC
AB
的值;
(3)若|
OA
|=1
|
OB
|=
3
,且P1,P2,P3,…,Pn-1为线段AB的n(n≥2)个等分点,求
OP1
AB
+
OP2
AB
+…+
OPn-1
AB
的值.
答案

(1)由

AC
CB
,得
OC
-
OA
=λ(
OB
-
OC
)

(1+λ)

OC
=
OA
OB
,因为λ≠-1,所以
OC
=
OA
OB
1+λ
.(4分)

(2)

OC
AB
=
OA
OB
1+λ
(
OB
-
OA
)=
1-λ
1+λ
OA
OB
+
λ
1+λ
OB
2
-
1
1+λ
OA
2
(6分)

因为

OA
OB
=0,|
OA
|=|
OB
|=a
,所以
OC
AB
=
λ-1
λ+1
a2

由于C为线段AB上靠近A的一个三等分点,故λ=

1
2

所以

OC
AB
=-
1
3
a2(8分)

(3)

OP1
AB
+
OP2
AB
+…+
OPn-1
AB
=
AB
(
OP1
+
OP2
+…+
OPn-1
)

=

AB
(
OA
+
1
n-1
OB
1+
1
n-1
+
OA
+
2
n-2
OB
1+
2
n-2
+…+
OA
+
n-1
n-(n-1)
OB
1+
n-1
n-(n-1)
)(10分)

=

AB
[(
n-1
n
+
n-2
n
+…+
1
n
)
OA
+(
1
n
+
2
n
+
n-1
n
)
OB
]

=

n-1
2
(
OB
-
OA
)(
OB
+
OA
)=
n-1
2
(
OB
2
-
OA
2
)
=n-1(14分)

单项选择题
判断题