在△OAB中, (1)若C为直线AB上一点,且
(2)若
(3)若|
|
(1)由
=λAC
,得CB
-OC
=λ(OA
-OB
).OC
即(1+λ)
=OC
+λOA
,因为λ≠-1,所以OB
=OC
.(4分)
+λOA OB 1+λ
(2)
•OC
=AB
(
+λOA OB 1+λ
-OB
)=OA 1-λ 1+λ
•OA
+OB λ 1+λ
2-OB 1 1+λ
2(6分)OA
因为
•OA
=0,|OB
|=|OA
|=a,所以OB
•OC
=AB
a2.λ-1 λ+1
由于C为线段AB上靠近A的一个三等分点,故λ=1 2
所以
•OC
=-AB
a2(8分)1 3
(3)
•OP1
+AB
•OP2
+…+AB
•OPn-1
=AB
(AB
+OP1
+…+OP2
)OPn-1
=
(AB
+
+OA 1 n-1 OB 1+ 1 n-1
+…+
+OA 2 n-2 OB 1+ 2 n-2
)(10分)
+OA n-1 n-(n-1) OB 1+ n-1 n-(n-1)
=
[(AB
+n-1 n
+…+n-2 n
)1 n
+(OA
+1 n
+2 n
)n-1 n
]OB
=
(n-1 2
-OB
)(OA
+OB
)=OA
(n-1 2
2-OB
2)=n-1(14分)OA