问题 解答题
(1)计算:
1
1×3
+
1
3×5
+…+
1
2011×2013

(2)若|x-1|+|y+1|=0,试求:
1
x(y+3)
+
1
(x+1)(y+4)
+
1
(x+2)(y+5)
+…+
1
(x+2011)(y+2014)
的值;
(3)若n为整数,且(
1
1×4
+
1
4×7
+
1
7×10
+…+
1
2002×2005
)×|n|<1,求n2+n的值.
答案

(1)

1
1×3
+
1
3×5
+…+
1
2011×2013

=

1
2
×(1-
1
3
+
1
3
-
1
5
+…+
1
2011
-
1
2013

=

1
2
×(1-
1
2013

=

1
2
×
2012
2013

=

1006
2013

(2)∵|x-1|+|y+1|=0,

∴x-1=0,y+1=0,

解得x=1,y=-1,

1
x(y+3)
+
1
(x+1)(y+4)
+
1
(x+2)(y+5)
+…+
1
(x+2011)(y+2014)

=1-

1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2012
-
1
2013

=1-

1
2013

=

2012
2013

(3)

1
1×4
+
1
4×7
+
1
7×10
+…+
1
2002×2005

=

1
3
×(1-
1
4
+
1
4
-
1
7
+…+
1
2002
-
1
2005

=

1
3
×(1-
1
2005

=

1
3
×
2004
2005

=

668
2005

∵(

1
1×4
+
1
4×7
+
1
7×10
+…+
1
2002×2005
)×|n|<1,

∴n=-3或-2或-1或0或1或2或3,

∴当n=-3时,n2+n=6;

当n=-2时,n2+n=2;

当n=-1时,n2+n=0;

当n=0时,n2+n=0;

当n=1时,n2+n=2;

当n=2时,n2+n=6;

当n=3时,n2+n=12.

单项选择题
单项选择题