问题
解答题
化简: (1)
(2)(
(3)已知关于x的方程x2-(k+1)x+
①k为何值时,方程有两个实数根? ②若方程的两个实数根x1,x2满足|x1|=x2,则k为何值? |
答案
(1)
cot260°+sin30°+tan36°-4tan45°cos45°-cot54°3 2
=
×3 2
+1 3
+tan36°-4×1×1 2
-cot54°2 2
=
+1 2
-21 2 2
=1-2
;2
(2)(
-418
+1 2
)÷1
-2 3 3 3
=(3
-22
-2
-2
)×3 3
=-3;
(3)①∵由题意,得△=[-(k+1)]2-4(
)≥0,k2+1 4
∴k≥
,3 2
∴当k≥
时,此方程有实数根;3 2
②∵x1+x2=k+1>0,x1x2=
>0,k2+1 4
∴x1>0,x2>0,
又|x1|=x2,
∴x1=x2,
∴△=0,
∴k=
.3 2
故若方程的两个实数根x1,x2满足|x1|=x2,则k为
.3 2