问题
填空题
已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的______条件.
答案
由题意,f(x)是定义在R上的偶函数,f(x)为[0,1]上的增函数
所以f(x)为[-1,0]上是减函数
又f(x)是定义在R上的函数,且以2为周期
[3,4]与[-1,0]相差两个周期,故两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立,
若f(x)为[3,4]上的减函数,由周期性可得出f(x)为[-1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立
综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.
故答案为:充要.