问题 填空题
在△ABC 中,记 BC=a,CA=b,AB=c,若9a2+9b2-19c2=0,则
cotC
cotA+cotB
=______.
答案

∵9a2+9b2-19c2=0,

∴9a2+9b2=19c2

a
sinA
=
b
sinB
=
c
sinC
,cosC=
a2+b2-c2
2ab

cotC
cotA+cotB
=
cosC
sinC
cosA
sinA
+
cosB
sinB
=
cosC
sinC
sinBcosC+cosBsinC
sinAsinB
=
sinAsinB
sin2C
•cosC

=

ab
c2
a2+b2-c2
2ab
=
a2+b2-c2
2c2
=
9a2+9b2-9c2
2×9c2
=
19c2-9c2
18c2
=
5
9

故答案为:

5
9

填空题
单项选择题