问题 填空题
已知α为第二象限的角,化简cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα
=______.
答案

∵α是第二象限角,

∴sinα>0,cosα<0,

则原式=cosα•

(1-sinα)(1+sinα)
(1+sinα)2
+sinα•
(1-cosα)(1+cosα)
(1+cosα)2

=

-cos2a
1+sinα
+
sin2α
1+cosα

=

-(1-sin2α)
1+sinα
+
1-cos2α
1+cosα

=sinα-1+1-cosα

=sinα-cosα

故答案为:sinα-cosα

名词解释
单项选择题