船在400米宽的河中横渡,河水流速是2m/s,船在静水中的航速是4m/s,
试求:(1)要使船到达对岸的时间最短,船头应指向何处?最短时间是多少?航程是多少?
(2)要使船航程最短,船头应指向何处?最短航程为多少?渡河时间又是多少?
(1)当船头垂直指向对岸时,渡河时间最短.
tmin=
=d v静
s=100s.400 4
此时沿河岸方向的位移x=v水t=2×100m=200m.
航程s=
=200d2+x2
m5
答:要使船到达对岸的时间最短,船头应垂直指向河岸,渡河时间为100s,航程为200
m.5
(2)当合速度的方向与河岸垂直时,渡河位移最短.
设船头与上游河岸方向的夹角为θ,则cosθ=
=v水 v静
,所以θ=60°1 2
渡河的位移x=d=400m.
v合=
=2v静2-v水2
m/s.3
渡河时间t=
=d v合
s=400 2 3
s=115.5s200 3 3
答:船头应与上游河岸成60°角,最短航程为400m,渡河时间t=200 3
s=115.5s.3