问题
解答题
已知sin(x+
|
答案
∵sin(x+
)=sinxcosπ 4
+cosxsinπ 4
=π 4
(sinx+cosx)2 2
sin(x-
)=sinxcosπ 4
-cosxsinπ 4
=π 4
(sinx-cosx)2 2
∴sin(x+
)sin(π 4
-x)=π 4
(sin2x-cos2x)=1 2
,可得sin2x-cos2x=1 6 1 3
结合sin2x+cos2x=1解得sin2x=
,cos2x=2 3 1 3
∵x∈(
,π),∴sinx=π 2
,cosx=-6 3 3 3
由此可得sin2x=2sinxcosx=-
,cos2x=cos2x-sin2x=2 2 3 1 3
∴sin4x=2sin2xcos2x=2×(-
)×2 2 3
=-1 3 4 2 9