问题
解答题
已知函数f(x)=(1+cotx)sin2x+msin(x+
(1)当m=0时,求f(x)在区间[
(2)当tana=2时,f(a)=
|
答案
(1)当m=0时,f(x)=(1+
)sin2x=sin2x+sinxcosx=cosx sinx
=1-cos2x+sin2x 2
[1 2
sin(2x-2
)+1],π 4
由已知x∈[
,π 8
],得2x-3π 4
∈[-π 4
,1],从而得:f(x)的值域为[0,2 2
].1+ 2 2
(2)因为f(x)=(1+
)sin2x+msin(x+cosx sinx
)sin(x-π 4
)π 4
=sin2x+sinxcosx+m(cos
-cos2x)π 2 2
=
+1-cos2x 2
-sin2x 2 mcos2x 2
=
[sin2x-(1+m)cos2x]+1 2 1 2
所以f(α)=
[sin2α-(1+m)cos2α]+1 2
=1 2
①3 5
当tanα=2,得:sin2a=
=2sinacosa sin2a+cos2a
=2tana 1+tan2a
,cos2a=-4 5
,3 5
代入①式,解得m=-2.