问题 解答题
已知函数f(x)=(1+cotx)sin2x+msin(x+
π
4
)sin(x-
π
4
).
(1)当m=0时,求f(x)在区间[
π
8
4
]
上的取值范围;
(2)当tana=2时,f(a)=
3
5
,求m的值.
答案

(1)当m=0时,f(x)=(1+

cosx
sinx
)sin2x=sin2x+sinxcosx=
1-cos2x+sin2x
2
=
1
2
[
2
sin(2x-
π
4
)+1]

由已知x∈[

π
8
4
],得2x-
π
4
∈[-
2
2
,1]
,从而得:f(x)的值域为[0,
1+
2
2
]

(2)因为f(x)=(1+

cosx
sinx
)sin2x+msin(x+
π
4
)sin(x-
π
4
)

=sin2x+sinxcosx+

m(cos
π
2
-cos2x)
2

=

1-cos2x
2
+
sin2x
2
-
mcos2x
2

=

1
2
[sin2x-(1+m)cos2x]+
1
2

所以f(α)=

1
2
[sin2α-(1+m)cos2α]+
1
2
=
3
5

当tanα=2,得:sin2a=

2sinacosa
sin2a+cos2a
=
2tana
1+tan2a
=
4
5
cos2a=-
3
5

代入①式,解得m=-2.

单项选择题
问答题 简答题