问题
选择题
在△ABC中,设命题p:
|
答案
=a sinB
=b sinC
,即c sinA
=2RsinA sinB
,sinAsinC=sin2B①;2RsinB sinC
=2RsinB sinC
,sinAsinB=sin2c②,2RsinC sinA
①-②,得(sinC-sinB)(sinA+sinB+sinC)=0,则sinC=sinA,
∴C=A.同理得C=B,
∴A=B=C,则△ABC是等边三角形.
当A=B=C时,
=a sinB
=2R,2RsinA sinB
=b sinC
=2R,2RsinB sinC
=c sinA
=2R2RsinC sinA
∴
=a sinB
=b sinC
成立,c sinA
∴p命题是q命题的充分必要条件.
故选A