设函数满足条件|f(x)-f(y)|≤k|x-y|,x,y∈[a,b],0<k<1.取x0∈[a,b],构造序列fn(x0)):f1(x0)=f(x0),…,fn+1(x0)=f[fn(x0)],n=1,2,….
证明:(1)
绝对收敛;
(2)
存在.
参考答案:[详解] (1)由已知,有
|fn+1(x0)-fn(x0)|=f[fn(x0)]-f[fn-1(x0)]|≤k|fn(x0)-fn-1(x0)|≤…≤kn-1|f[f(x0)]-f(x0)|≤kn|f(x0)-x0|.
∵当0<k<1时,
收敛,
收敛,
即
绝对收敛.
(2)Sn=[f2(x0)-f1(x0)]+[f3(x0)-f2(x0)]+…+[fn+1(x0)-fn(x0)]
=fn+1(x0)-f1(x0),
由(1)知
存在,∴
存在.
解析:
[分析]: 由已知条件可得|fn+1(x0)-fn(x0)|≤kn|f(x0)-x0|.
[评注] [*]