问题 问答题

设A、B为两个n阶矩阵,已知:(1)A有n个互异的特征值.(2)A的特征向量也是B的特征向量.
求证:AB=BA.

答案

参考答案:[详解] 因为A有n个互异特征值λ1,λ2,…,λn,所以A有n个线性无关的特征向量ξ1,ξ2,…,ξn,即
iiξi,i=1,2,…,n.
由(2)得Bξiiξi,i=1,2,…,n. 于是
BAξi=B(λiξi)=λiiiμiξi=ABξi
对于n维向量空间Rn中的任一向量ξ,必存在唯一的k1,k2,…,kn,使
ξ=k1ξ1+k2ξ2+…+knξn
从而


所以 AB=BA.

解析:

[分析]: 若对[*]ξ,有ABξ=BAξ,则AB=BA.而ξ可表示为特征向量ξ1,ξ2,…,ξn的线性组合.因此,只需证明对特征向量ξi,有ABξi=BAξi(i=1,2,…n)即可.而这利用特征值,特征向量的定义即可证明.
[评注] 本题也可用矩阵形式推导:令ξ1,ξ2,…,ξn是A的分别属于其不同特征值λ1,λ2,…,λn的特征向量,则ξ1,ξ2,…,ξn线性无关,故P=[ξ1,ξ2,…,ξn]可逆,且
[*]

问答题 简答题
填空题 案例分析题