问题 解答题
已知点A(1,0),B(0,1),C(2sinθ,cosθ).
(1)若|
AC
|=|
BC
|
,求tanθ的值;
(2)若(
OA
+2
OB
)•
OC
=1
,其中O为坐标原点,求sin2θ的值
答案

(1)∵A(1,0),B(0,1),C(2sinθ,cosθ)

AC
=(2sinθ-1,cosθ),
BC
=(2sinθ,cosθ-1)

|

AC
|=|
BC
|∴
(2sinθ-1)2+cos2θ
=
4sin2θ+(cosθ-1)2

2sinθ=cosθ∵cosθ≠0∴tanθ=

1
2
(6分)

(2)∵

OA
=(1,0),
OB
=(0,1),
OC
=(2sinθ,cosθ)

OA
+2
OB
=(1,2)∵(
OA
+2
OB
)•
OC
=1

2sinθ+2cosθ=1∴sinθ+cosθ=

1
2

(sinθ+cosθ)2=

1
4
∴sin2θ=-
3
4
(12分)

填空题