问题 解答题
在平面直角坐标系xOy中,以Ox轴为始边做两个锐角α、β,它们的终边分别与单位圆O相交于A、B两点,已知A、B的横坐标分别为
2
10
2
5
5

(Ⅰ)求cos(α-β)的值;
(Ⅱ)若点C为单位圆O上异于A、B的一点,且向量
OC
OA
夹角为
π
4
,求点C的坐标.
答案

(Ⅰ)依题意得,cosα=

2
10
,cosβ=
2
5
5
,…(2分)

∵α,β为锐角,

∴sinα=

1-cos2α
=
7
2
10
,sinβ=
1-cos2β
=
5
5
,…(4分)

则cos(α-β)=cosαcosβ+sinαsinβ

=

2
10
×
2
5
5
+
7
2
10
×
5
5

=

9
10
50
;…(6分)

(Ⅱ)设点C的坐标为(m,n),

∵C在单位圆上,则m2+n2=1,①…(7分)

∵向量

OC
OA
夹角为
π
4
,|
OC
|=|
OA
|=1,且
OC
=(m,n),
OA
=(cosα,sinα)=(
2
10
7
2
10
),

cos

π
4
=
OC
OA
|
OC
| |
OA
|
=
(m,n)•(
2
10
7
2
10
)
1×1
,…(9分)

整理得:

2
2
=
2
10
m+
7
2
10
n,即m+7n=5,②…(10分)

联立方程①②,

解得:

m=
4
5
n=
3
5
m=-
3
5
n=
4
5
…(11分)

∴点C的坐标为(

4
5
3
5
)或(-
3
5
4
5
)
.   …(12分)

判断题
单项选择题