问题
解答题
已知△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,cosB=
(Ⅰ)求
(Ⅱ)设
|
答案
(Ⅰ)由cosB=
,得sinB=3 4
=1-(
)23 4
,7 4
由b2=ac及正弦定理得sin2B=sinAsinC.
于是
+1 tanA
=1 tanC
+cosA sinA
=cosC sinC
=sinCcosA+cosCsinA sinAsinC
=sin(A+C) sin2B
=sinB sin2B
=1 sinB 4 7
.(6分)7
(Ⅱ)由
•BA
=BC
得ca•cosB=3 2
,由cosB=3 2
,可得ca=2,即b2=2.3 4
由余弦定理:b2=a2+c2-2ac•cosB,又b2=ac=2,cosB=
,3 4
得a2+c2=b2+2ac•cosB=2+4×
=5,3 4
则(a+c)2=a2+c2+2ac=5+4=9,解得:a+c=3.(12分)