问题
选择题
已知非零向量
|
答案
∵函数f(x)=(
x+a
)2=(b
x)2+(||a|
|)2+2b a
x,b
又f(x)为偶函数,
f(-x)=f(x),
∴f(-x)=(-
x)2+(||a|
|)2-2b a
x,b
∴f(-x)=f(x),∴2a
x=0,b
∴a
=0,b
∴
⊥a
,b
若
⊥a
,则b a
=0,∴f(-x)=f(x),b
∴f(x)为偶函数,
故选C.