问题 解答题

令A=1×2+2×3+3×4+…+98×99+99×100且B=12+22+32+…+982+992.那么A-B=______.

答案

1×2+2×3+3×4+…+98×99+99×100

=1×2+(2×3+3×4)+(4×5+5×6)+(6×7+7×8)+…+(98×99+99×100)

=2×12+2×32+2×52+2×72+2×92+…+2×992

=2×(12+32+52…+992

A-B=2×(12+32+52…+992)-(12+22+32+…+982+992

=12+32+52…+992-(22+42+…+982

=12+(32-22+52-42+72-62+…+…+992-982

=1+(5+9+13+…+197)

=1+(5+197)×49÷2

=1+4949

=4950

故答案为:4950.

单项选择题
问答题 简答题