问题
填空题
计算:l×2+2×3+3×4+…+28×29+29×30=______.
答案
l×2+2×3+3×4+…+28×29+29×30,
=1×(1+1)+2×(1+2)+3×(1+3)+…28×(1+28)+29×(1+29),
=1+1×1+2+2×2+3+3×3+…28+28×28+29+29×29,
=(1+2+3+…28+29)+(1×1+2×2+3×3+…28×28+29×29),
=(1+29)×29÷2+29(29+1)(2×29+1)÷6,
=435+8555,
=8990;
故答案为:8990.