问题 填空题

计算:1×2+2×4+3×6+…+1005×2010=______.

答案

1×2+2×4+3×6+…+1005×2010

=1×1×2+2×2×2+3×3×2+…+1005×1005×2;=2×(1×2+2×2+3×2+…+1005×2),

=2×[1005×(1005+1)×(1005×2+1)÷6],

=2×(1005×1006×2011÷6),

=2×(2033181330÷6),

=2×338863555,

=677727110.

故答案为:677727110.

单项选择题
问答题 简答题