(Ⅰ)已知tanθ=2,求
(Ⅱ)化简:sin2αsin2β+cos2αcos2β-
|
(Ⅰ)∵tanθ=2,
∴
=1-sin2θ 1+cos2θ
(3分)sin2θ+cos2θ-2sinθcosθ 1+2cos2θ-1
=sin2θ+cos2θ-2sinθcosθ 2cos2θ
=
(7分)tan2θ+1-2tanθ 2
=
=4+1-2×2 2
;(8分)1 2
(Ⅱ) sin2αsin2β+cos2αcos2β-
cos2αcos2β1 2
=
•1-cos2α 2
+1-cos2β 2
•1+cos2α 2
-1+cos2β 2
cos2αcos2β(13分)1 2
=
[(1-cos2α)(1-cos2β)+(1+cos2α)(1+cos2β)]-1 4
cos2αcos2β1 2
=
[2+2cos2αcos2β]-1 4
cos2αcos2β1 2
=
+1 2
cos2αcos2β-1 2
cos2αcos2β1 2
=
.(16分)1 2