问题 解答题
(Ⅰ)已知tanθ=2,求
1-sin2θ
1+cos2θ
的值;
(Ⅱ)化简:sin2αsin2β+cos2αcos2β-
1
2
cos2αcos2β.
答案

(Ⅰ)∵tanθ=2,

1-sin2θ
1+cos2θ
=
sin2θ+cos2θ-2sinθcosθ
1+2cos2θ-1
(3分)

=

sin2θ+cos2θ-2sinθcosθ
2cos2θ

=

tan2θ+1-2tanθ
2
(7分)

=

4+1-2×2
2
=
1
2
;(8分)

(Ⅱ) sin2αsin2β+cos2αcos2β-

1
2
cos2αcos2β

=

1-cos2α
2
1-cos2β
2
+
1+cos2α
2
1+cos2β
2
-
1
2
cos2αcos2β(13分)

=

1
4
[(1-cos2α)(1-cos2β)+(1+cos2α)(1+cos2β)]-
1
2
cos2αcos2β

=

1
4
[2+2cos2αcos2β]-
1
2
cos2αcos2β

=

1
2
+
1
2
cos2αcos2β-
1
2
cos2αcos2β

=

1
2
.(16分)

单项选择题
多项选择题 案例分析题