问题 解答题
已知函数f(x)=(1+
1
tanx
)sin2x+msin(x+
π
4
)sin(x-
π
4
)

(1)当m=0时,求函数f(x)在区间(
π
8
4
)
上的取值范围;
(2)当tanα=2时,f(α)=
6
5
,求m的值.
答案

(1)当m=0时,f(x)=(1+

cosx
sinx
)sin2x=sin2x+sinxcosx=
1-cos2x+sin2x
2
=
1
2
[
2
sin(2x-
π
4
)+1]

由已知x∈(

π
8
4
),f(x)的值域为(0,
1+
2
2

(2)∵f(x)=(1+

1
tanx
)sin2x+msin(x+
π
4
)sin(x-
π
4
)

=sin2x+sinxcosx+

m(cos
π
2
-cos2x)
2

=

1-cos2x
2
+
sin2x
2
-
mcos2x
2

=

1
2
[sin2x-(1+m)cos2x]+
1
2

f(α)=

6
5

∴f(α)=

1
2
[sin2α-(1+m)cos2α]+
1
2
=
6
5
  ①

当tanα=2,得:sin2a=

2sinαcosα
sin2α+cos2α
=
2tanα
1+tan2α
=
4
5
,cos2α=-
3
5

代入①式,解得m=-

7
5

单项选择题
单项选择题