问题
解答题
已知函数f(x)=(1+
(1)当m=0时,求函数f(x)在区间(
(2)当tanα=2时,f(α)=
|
答案
(1)当m=0时,f(x)=(1+
)sin2x=sin2x+sinxcosx=cosx sinx
=1-cos2x+sin2x 2
[1 2
sin(2x-2
)+1]π 4
由已知x∈(
,π 8
),f(x)的值域为(0,3π 4
)1+ 2 2
(2)∵f(x)=(1+
)sin2x+msin(x+1 tanx
)sin(x-π 4
)π 4
=sin2x+sinxcosx+m(cos
-cos2x)π 2 2
=
+1-cos2x 2
-sin2x 2 mcos2x 2
=
[sin2x-(1+m)cos2x]+1 2 1 2
∵f(α)=
,6 5
∴f(α)=
[sin2α-(1+m)cos2α]+1 2
=1 2
①6 5
当tanα=2,得:sin2a=
=2sinαcosα sin2α+cos2α
=2tanα 1+tan2α
,cos2α=-4 5 3 5
代入①式,解得m=-
.7 5