问题
选择题
△ABC的外心为O,AB=2,AC=3,BC=
|
答案
∵△ABC的外心为O,延长AO,交BC于D,则D为BC中点,
∴
=AO 2 3
=AD
×2 3
(1 2
+AB
)=AC
(1 3
+AB
),AC
故
•AO
=BC
(1 3
+AB
)•(AC
-AC
)AB
=
(1 3
2-AC
2)=AB
(32-22)=1 3 5 3
故答案为D
△ABC的外心为O,AB=2,AC=3,BC=
|
∵△ABC的外心为O,延长AO,交BC于D,则D为BC中点,
∴
=AO 2 3
=AD
×2 3
(1 2
+AB
)=AC
(1 3
+AB
),AC
故
•AO
=BC
(1 3
+AB
)•(AC
-AC
)AB
=
(1 3
2-AC
2)=AB
(32-22)=1 3 5 3
故答案为D