问题
解答题
数列{an}和{bn}满足an=
|
答案
证明:必要性若{bn}为等差数列,设首项b1,公差d
则an=
(nb1+1 n
d)=b1+n(n-1) 2
dn-1 2
∵an+1-an=
,∴{an}为是公差为d 2
的等差数列d 2
充分性若{an}为等差数列,设首项a1,公差d
则b1+b2+…+bn=n[a1+(n-1)d]=dn2+(a1-d)
nb1+b2+…+bn-1=d(n-1)2+(a1-d)(n-1),(n≥2)
∴bn=2dn+(a1-2d),(n≥2)
当n=1时,b1=a1也适合
∵bn+1-bn=2d,∴{bn}是公差为2d的等差数列