问题 填空题
设向量
a
b
c
满足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,|
a
|=1,则|
c
|=______.
答案

a
+
b
+
c
=
0
可得,
c
=-(
a
+
b
),

∵(

a
-
b
)⊥
c
,∴(
a
-
b
)•[-(
a
+
b
)]=0,∴
a
2-
b
2=0,

又∵|

a
|=1,∴|
b
|=1,

a
b
,∴
c
2=[-(
a
+
b
)]2=
a
2+2
a
b
+
b
2=2,即|
c
|=
2

故答案为:

2

单项选择题
问答题