问题 解答题
已知向量
a
=(sinθ,2),
b
=(cosθ,1),且
a
b
,其中θ∈(0,
π
2
)

(1)求sinθ和cosθ的值;
(2)若sin(θ-ω)=
3
5
,0<ω<
π
2
,求cosω的值.
答案

(1)∵向量

a
=(sinθ,2),
b
=(cosθ,1),且
a
b

sinθ
2
=
cosθ
1
,即sinθ=2cosθ.

∵sin2θ+cos2θ=1,θ∈(0,

π
2
),

解得sinθ=

2
5
5
,cosθ=
5
5

∴sinθ=

2
5
5
,cosθ=
5
5

(2)∵0<ω<

π
2
θ∈(0,
π
2
)
,∴-
π
2
<θ-ω<
π
2

sin(θ-ω)=

3
5

cos(θ-ω)=

1-sin2(θ-ω)
=
4
5

∴cosω=cos[θ-(θ-ω)]=cosθcos(θ-ω)+sinθsin(θ-ω)=

2
5
5

多项选择题
单项选择题