问题 解答题
已知tan(
π
4
+α)=2,tanβ=
1
2

(1)求tanα的值;
(2)求
sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
的值.
答案

(1)∵tan(

π
4
+α)=2,

tanα=tan[(

π
4
+α)-
π
4
]=
tan(
π
4
+α)-tan
π
4
1+tan(
π
4
+α)tan
π
4
=
2-1
1+2×1
=
1
3

(2)

sin(α+β)-2sinαcosβ
2sinαsinβ+cos(α+β)
=
sinαcosβ+cosαsinβ-2sinαcosβ
2sinαsinβ+cosαcosβ-sinαsinβ

=

cosαsinβ-sinαcosβ
cosαcosβ+sinαsinβ
=
sin(β-α)
cos(β-α)
=tan(β-α)=
tanβ-tanα
1+tanβtanα
=
1
2
-
1
3
1+
1
2
×
1
3
=
1
7

判断题
单项选择题