问题
解答题
已知tan(
(1)求tanα的值; (2)求
|
答案
(1)∵tan(
+α)=2,π 4
∴tanα=tan[(
+α)-π 4
]=π 4
=tan(
+α)-tanπ 4 π 4 1+tan(
+α)tanπ 4 π 4
=2-1 1+2×1
.1 3
(2)
=sin(α+β)-2sinαcosβ 2sinαsinβ+cos(α+β) sinαcosβ+cosαsinβ-2sinαcosβ 2sinαsinβ+cosαcosβ-sinαsinβ
=
=cosαsinβ-sinαcosβ cosαcosβ+sinαsinβ
=tan(β-α)=sin(β-α) cos(β-α)
=tanβ-tanα 1+tanβtanα
=
-1 2 1 3 1+
×1 2 1 3
.1 7